
Larger Water Clusters with Edges and Corners on Their Way to Ice: Structural Trends
Elucidated with an Improved Parallel Evolutionary Algorithm

Bernhard Bandow and Bernd Hartke*
Institut für Physikalische Chemie, Christian-Albrechts-UniVersität, Olshausenstrasse 40, 24098 Kiel, Germany

ReceiVed: January 24, 2006; In Final Form: March 6, 2006

For the difficult task of finding global minimum energy structures for molecular clusters of nontrivial size,
we present a highly efficient parallel implementation of an evolutionary algorithm. By completely abandoning
the traditional concept of generations and by replacing it with a less rigid pool concept, we have managed to
eliminate serial bottlenecks completely and can operate the algorithm efficiently on an arbitrary number of
parallel processes. Nevertheless, our new algorithm still realizes all of the main features of our old, successful
implementation. First tests of the new algorithm are shown for the highly demanding problem of water clusters
modeled by a potential with flexible, polarizable monomers (TTM2-F). For this problem, our new algorithm
not only reproduces all of the global minima proposed previously in considerably less CPU time but also
leads to improved proposals in several cases. These, in turn, qualitatively change our earlier predictions
concerning the transitions from all-surface structures to cages with a single interior molecule, and from one
to two interior molecules. Furthermore, we compare preliminary results up ton ) 105 with locally optimized
cuts from several ice modifications. This comparison indicates that relaxed ice structures may start to be
competitive already at cluster sizes aboven ) 90.

1. Introduction

Atomic and molecular clusters are important objects of current
experimental and theoretical studies, because they bridge the
gap between single particles and bulk matter, across the
nanoscale regime. Just in this most interesting size regime,
structures and properties of clusters turn out to differ from the
bulk and depend on cluster size in ways that are hard to predict.1

There are two main problems for the theoretical treatment of
clusters. The usual chemical intuition for the structures of
common molecules often fails for clusters. At the same time,
finding the lowest-energy structure in an unbiased way turns
out to be a problem that appears to scale exponentially with
cluster size. Formal proofs of NP hardness have been proposed2

but do not seem to be fully conclusive.3 Nevertheless, many
items of empirical evidence support this size scaling, starting
with the historical counting of lcoal minima for Lennard-Jones
(LJ) clusters by Hoare et al.4

This already disastrous scaling pertains for atomic clusters.
In molecular clusters, each molecule has three additional
orientational degrees of freedom. These additional degrees of
freedom alone constitute yet another exponentially scaling
optimization problem,5 inseparably intertwined with the expo-
nentially scaling positional optimization problem. Therefore,
finding optimal structures for molecular clusters is even more
difficult than for atomic clusters. Hence, global optimization
of atomic clusters has always been done for considerably larger
sizes than for molecular clusters. For example, LJ clusters are
currently studied with unbiased global optimization methods
up to aboutn ) 300 particles,6-9 but full, systematic optimiza-
tion of water clusters has not significantly proceeded beyondn
) 30 yet.10

Although deterministic global optimization methods are being
improved substantially at present,11-13 they are still not ap-

plicable to cluster sizes of practical interest. Therefore, stochastic-
heuristic methods are needed. At the expense of the guarantee
for finding the global minimum energy structure, they offer
practical applicability for much larger clusters while still offering
a good probability for finding global and lowest-energy local
minima, if applied properly. Algorithms of this class used most
often recently include simulated annealing14 and its more recent
cousins such as conformational space annealing,6 basin-hop-
ping,15,16 and genetic algorithms (GA) or, more generally,
evolutionary algorithms (EA) (see ref 1 for further discussion
and literature citations).

Water clusters have been studied with unbiased global
structure optimization methods several times (see, for example,
refs 5 and 17 and further literature cited therein), mostly with
the TIP4P empirical potential. For the smallest pure neutral
clusters, there are direct connections to detailed experimental
information from IR spectra.18 Also, there are obvious connec-
tions to the role of water as solvent via the study of solvation
clusters.19,20Indeed, this has grown into such a broad field that
no full overview will be attempted here.

Although pure neutral TIP4P water clusters have become an
important benchmark for molecular clusters,21 and although
TIP4P actually does surprisingly well for small water clusters
(up to about n ) 12) when compared to ab initio and
experimental results, it turned out recently that TIP4P begins
to fail qualitatively for slightly larger clusters: most notably,
in the size regionn ) 17-21, where the transition from all-
surface structures to molecule-centered ones occurs, strong
disagreements were found10 between structures based on TIP4P
and structures based on the elaborate TTM2-F potential by
Burnham and Xantheas.22 This actually is a failure of TIP4P
because the TTM2-F results were later confirmed by MP2 ab
initio calculations23 (see also ref 24). However, evaluation of
TTM2-F energies and gradients costs a factor of about 20 more* Corresponding author. E-mail: hartke@phc.uni-kiel.de.
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than for TIP4P, which exacerbates the global water cluster
structure optimization problem further.

Therefore, already in ref 10 a parallel implementation of an
EA approach running on 60 processors of a Cray T3E was
needed to be able to do water cluster global structure optimiza-
tion with TTM2-F up ton ) 30. Although this implementation
succeeded in parallelizing the most compute-intensive parts by
distributing the many local optimization tasks, it did so by
mapping the standard generational EA paradigm onto a master-
slave model. This lead to an alteration between massively
parallelized code sections with purely serial bottlenecks of
significant lengths, which obviously is detrimental to the overall
performance of the algorithm and constitutes a misuse of parallel
computing resources.

In this paper, we report a considerably improved implementa-
tion. It largely realizes the same overall algorithm but completely
eliminates serial bottlenecks and hence processor idle times by
replacing the rigidly preordered generational model with a less
structured and hence more flexible pool model. We are not sure
if this is the first EA implementation of this type. For example,
Ge and Head briefly mention a generation-free parallel GA being
used in their work,25 albeit without giving any details. In any
case, such aspects appear to be absent from recent review works
on parallel EA implementations (see, for example, ref 26, where
the focus is on generational master-slave style implementations
and on distributed subpopulations).

Therefore, we describe our new algorithm and its implemen-
tation in some detail in Section 2, in contrast to the old
algorithm. For a real-life check, we have tested this implementa-
tion by applying it to pure neutral water clusters modeled by
the full TTM2-F potential with flexible monomers, up ton )
34. To perform various direct comparisons with our previous
generation-based master-slave implementation more quickly, we
have also employed the TIP4P potential. The results of these
two series of tests are described briefly in Section 3. Section 4
focuses on the TTM2-F global minimum structures, which
partially extend and change our previous understanding of water
clusters in this size range. This is followed in section 5 by a
comparison of preliminary results for still larger water clusters
(up to n ) 105) with relaxed ice cutouts. The article ends in
Section 6 with a summary of conclusions and future work.

2. Development of the New Algorithm

2.1. Old Generation-Based Algorithm.The global cluster
structure optimization algorithm PHENIX used previously in
our group is described in refs. 5 and 27. Full technical details
can be found in these two publications. For reference in the
following sections, a rough sketch is given below.

Two important ingredients of this algorithm are a phenotype
crossover for generating new clusters and a niching concept to
maintain a minimum level of structural diversity in the popula-
tion (hence the acronym). In our work on Lennard-Jones
clusters,27 directed mutations proved to be valuable in exploring
the immediate neighborhood of trial solutions in a nonrandom
fashion. For molecular clusters, the individuals in the population
consist of coordinate sixtuples (three Cartesian coordinates of
the center of mass, and three Eulerian angles for the rotational
orientation of the molecule with respect to a given reference
orientation). For this case, it turned out that a global optimization
of the Euler angles alone (with all positions fixed) as an
additional step leads to improved performance.5 All global
optimization steps are followed by local optimizations using
standard algorithms (conjugate gradient or quasi-Newton). These
local optimizations take>95% of the total CPU time but also
lead to substantial performance gains.

This algorithm was originally run as one single serial process.
However, because the local optimization of an individual after
each operation is independent from all of the others (within a
given stage), the algorithm can be parallelized easily on this
coarse-grained level. The gains in speed are substantial because
these local optimizations take almost all CPU time. Our first
attempt at such a parallelization10 consisted of a straighforward
master-worker scheme. Although the master holds the complete
list of data (the whole population), it distributes small portions
of the whole problem to the workers. Essentially, the parallel-
ization is mapped onto the problem to solve. For reference, we
depict this implementation in Figure 1.

At startup, a set ofn individuals is generated randomly, or
individuals from an earlier run are read in. Then, the generational
cycle begins with a mating phase, where all possible pairs of
individuals are formed. With a population size ofn, this leads
to n(n + 1)/2 pairs (including self-pairing). Bundled tasks of
work on these pairs (consisting of crossover, mutation, and local
optimization with a certain convergence threshold) was distrib-
uted overm processes, constituting a first large parallel phase.

The results were collected by the master process into an
interim list of new individuals. As an elite-like measure, the
parents of the last generation were appended to this interim list.
From this longer interim list,n new individuals were selected
for the next generation, according to fitness (best energy) and
geometry criteria (niching). The master process performed this
selection serially and had to wait for all slave processes to finish
their crossover work. Even worse, all slave processes had to
wait for the master and for each other before the next parallel
phase could start.

After selection, then new individuals were subjected to
postprocessing steps (directed mutation and global orientational
optimization, described in detail in refs. 5, 10, and 27), which
were again distributed in parallel, constituting a second, smaller
parallel phase. Directed mutation puts a three-dimensional grid
on the cluster. Molecules with the smallest contribution to the
cluster total energy are then removed. Several attempts with
different orientations are made to reintroduce these molecules
into the centers of these boxes, trying to lower the total energy
of the individual. If a following local optimization attains no
improvement, then the number of molecules is increased and
directed mutation is tried again. After a maximum number of
unsuccessful attempts, the original individual is delivered back.
Global orientational optimization is a full EA acting on the
orientations of the molcules only, that is, the set of Eulerian

Figure 1. Scheme of the old parallelized generation-based algorithm.
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angles of one cluster, with the positions of the centers kept fixed.
This is followed by a local optimization and the original
individual here also is delivered back if no improvement is
attained. Local optimizations here are performed with a higher
threshold than that used during the mating phase.

This was again followed by a serial collection and evaluation
phase by the master. If an individual had lower total energy
after orientational optimization, then it was chosen as the parent
for the next generation; otherwise the result of the directed
mutation was selected. Then a test for convergence or a counter
of generations decided whether to quit the simulation or to start
a next generation with the selected indivduals as parents.

Because the program was intended to run on supercomputers
with shared memory architecture as well as on cluster computers
that provide distributed memory, parallelization was imple-
mented with the message passing interface (MPI). Static load
balance was realized by choosing the number,n, of individuals
and the number,m, of parallel processes such that eithern(n +
1)/2 (the number of pairs of individuals during the crossover
phase) or 2n (the number of individuals during the postpro-
cessing phase) becomes an integer multiple ofm. Obviously,
this led to substantial restrictions in practice. Standard MPI send
and receive commands were used to distribute new parallel tasks
to processes that had completed their previous task. Although
the rigid order of processes used in MPI could lead to
imbalances,28 for all but the smallest clusters the tasks are long
enough to mask this behavior. Hence, a crude dynamic load
balancing could be achieved. Nevertheless, strong imbalances
in system load and long process idle times were visible (see
section 3.3) simply because the CPU time needed for local
optimization tasks of larger clusters varies very strongly and
unpredictably with the starting geometries.

2.2. New Asynchronous Algorithm.Because a sufficiently
accurate prediction of CPU times for local optimization of a
given starting geometry presumably is either very difficult or
very CPU intensive itself (or both), we decided to change the
flowchart of the global optimization algorithm itself. It turned
out that there was no need to abandon the simple master-slave
scheme in favor of more complicated schemes with processes
of equal rank. Instead, a more promising ansatz was mapping
the problem onto the parallelization instead of mapping the
parallelization onto the problem. Specifically, we abandoned
the rigidity of the successive generational scheme of standard
serial EAs. The general framework of the new asynchronous
algorithm is depicted in Figure 2.

A population ofn individuals held by the master acts as a
pool of constant size. The genetic operators are applied by the
slaves to the members of this pool. Crossover, orientational
optimization, and directed mutation are the same as before, but
now they are performed by the slaves with a certain probability
(instead of in a certain succession). Selection and niching
constituted the serial bottleneck of our old generation-based
algorithm, but because they are essential they have to be retained
in some fashion. Fortunately, their CPU time is insignificant
compared to the local optimization tasks; therefore, we can
afford to apply them not only once (after the crossover phase
in the old algorithm) but now in every step.

From the existing population the master selects a number of
individuals applying the energy and niching criteria. With the
appropriate probability, a single individual or a pair of individu-
als are then picked at random from this selection and a copy is
send to a slave to perform the desired operations. The resulting
individuals are then returned to the master who checks them
for similarity to the already existing ones in the pool. This is
done by comparing the energy of the new individual with the
energy of all of the others. Assuming that identical energies
belong to identical individuals, a new individual is skipped if
its energy already exists. Otherwise the new individual replaces
a randomly chosen individual except the energetically best one.
Hence, as a welcome side effect, the need for storing a
significantly larger population built up from all possible pairs
is eliminated (although, of course, all of those pairs are
potentially still feasible).

3. Algorithm Verification and Comparison

3.1. Used Hardware and Comparabilty.For the comparison
of these two algorithms, two series of simulation runs on two
different types of computers were performed, a 22 node dual
Opteron cluster at 2.2 GHz, using the Portland compiler, and a
SGI altix 3700 with 128 Itanium 2 processors at 1.3 GHz with
shared memory, using the Intel compiler. The first series
employed the TTM2-F potential and was performed on the dual
Opteron cluster using 20 processors on 10 nodes with 2
processors each. The second one used the TIP4P potential and
was performed on the SGI altix using 32 processors.

Because the asynchronous algorithm permits crossover,
directed mutation, and orientational optimization to take place
with certain probabilities, these had to be set in a way that the
number of operations is the same on average as that in the
generation-based algorithm. Letngeobe the number of clusters
forming a population andngenerthe number of generations.
The generation-based algorithm is divided into two parallel
phases in each generation. In the first phase, it does crossover
with all cluster pairs including self-crossover; these are 1/2(ngeo‚
ngeo+ ngeo) operations. During postprocessing 2ngeoopera-
tions are executed. Hence, we arrive at a total ofngener
[1/2(ngeo‚ngeo+ ngeo) + 2ngeo] operations during a whole
simulation run. The new asynchronous algorithm doesniter steps
in total, with the operations crossover, directed mutation, and
orientational optimization taking place with the probabilities
p(xoVer), p(dirmut), andp(oropt). The probabilites were chosen
so that the following relations were fulfilled:

Local optimization after each of these operations was
performed with the corresponding convergence thresholds, that

Figure 2. Sketch of the pool concept of our new parallel EA
implementation.

niter‚p(xoVer) ≈ ngener‚ 1/2(ngeo‚ ngeo+ ngeo)

niter‚p(dirmut) ≈ ngener‚ ngeo

niter‚p(oropt) ≈ ngener‚ ngeo
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is, a loose threshold after crossover and a tighter one after
directed mutation and orientational optimization.

3.2. Performance of the Asynchronous Algorithm.Because
local optimization with the TTM2-F potential is very time-
consuming, we have used a very loose threshold of 10-1 for
the relative energy convergence in the local TTM2-F optimiza-
tions following the crossover operations and a tight threshold
of 10-8 in the optimizations following orientational optimization
and directed mutation. The cluster size rangen ) 4-30 was
covered with six simulation runs at each size.

With this setup, we have varied all of the standard GA
parameters, in particular total run length, pool size (number of
individuals), and crossover probability (coupled to amount of
loose-threshold local optimizations). In all cases, the behavior
of the new algorithm is in perfect accord with the generic
behavior expected from standard generation-based algorithms.
Therefore, we refrain from reporting all of these results here; a
detailed account will be published elsewhere.29

Only one item was slightly unexpected: From these studies,
we conclude that a population of 30 individuals is enough to
reach good results for the cluster sizes examined here; larger
populations produce no significant improvement. This is a
surprising finding because the new algorithm lacks the larger
intermediate population of the old algorithm.

3.3. Comparison between the Algorithms.Remembering
the great expenses of time for local optimization employing the
TTM2-F potential, we chose the same loose settings for energy
convergence as mentioned in the beginning of section 3.2 to be
able to run the tests more quickly. Additionally, the runs were
limited to a population size of 20 individuals and a duration of
20 generations for the generation-based algorithm. According
to the above, this corresponds to 5000 iterations for the
asynchronous algorithm, or more specifically to 4200 crossover
operations, attained by settingp(xoVer) ) 84%, and 400 directed
mutations and orientational optimizations each, attained by
settingp(dirmut) ) p(oropt) ) 8%. Directed mutations were
tried in 153 boxes while orientational optimization was per-
formed on a population of 10 individuals lasting 10 generations.
The threshold for local optimization following a crossover was
set to 10-1, and to 10-8 after directed mutation and orientational
optimization. Cluster sizes ranged fromn ) 4 to n ) 30 with
six simulation runs at each size.

A second series of simulations used the TIP4P potential. Runs
using the generation-based algorithm were done with a popula-
tion size of 20 individuals, lasting 80 generations. Withp(xoVer)
) 84% andp(dirmut) ) p(oropt) ) 8% the number of iterations
for the asynchronous algorithm was set to 20000. Directed

mutations were also tried in 153 boxes but orientational
optimization was performed on a population of 10 individuals
lasting 100 generations. The threshold for local optimization
after directed mutation and orientational optimization was kept
at 10-8 and set to the usually applied value of 10-4 following
a crossover. A cluster size range ofn ) 10-30 was also covered
by six runs each.

Figures 3 and 4 directly compare final energies in kJ/mol
versus cluster size for the old and the new algorithm. To
emphasize the small differences in comparison to the statistical
scatter, both plots show the differences between the average
values of both data sets at each cluster size, while the length of
the errorbars corresponds to the standard deviation. The order
of entries in the legend reflects the order in the calculation of
the difference: values belonging to the first entry were
subtracted from those belonging to the second one.

As shown in Figure 3 for the TTM2-F potential, the final
energies for cluster sizesn e 10 are the same for both
algorithms. Results forn g 11 are in 12 cases greater than zero
and in 9 cases smaller. Only atn ) 18 the zero line is clearly
not within the spread of the standard deviation; such an outlier
result can be expected for these rather short test runs. Addition-
ally, the standard deviations show similar spreads for both
algorithms in all cases. Therefore, in general, the quality of the
results does not depend on the underlying algorithm.

Figure 4 depicts the case of the TIP4P potential. The energy
differences are in 12 cases greater than zero and in 8 cases
smaller. Except forn ) 22, the zero line is always inside the
spread of the standard deviation. The overlap of the standard
deviation spreads is significant and comparable to the case of
the TTM2-F simulations. So the results not only do not depend
on the algorithm but they are also independent from the
potential.

Local optimizations are used many times throughout both
global optimization algorithms and require the major part
(>95%) of computer time in serial implementations. Therefore,
these test calculations were speeded up considerably by using
loose thresholds. The price to pay is that for some of the larger
clusters we do not quite reach the best energies published
previously.10 However, this happens to the same degree for both
the new and old implementation (neither one is consistently
better in Figures 3 or 4, and even the spread of energies is very
similar); therefore, comparability is retained.

Throughout the whole cluster size range tested, all of these
findings prove that the new algorithm is able to produce the
same results as the old one, within the usual variations to be
expected from stochastic global optimization algorithms, for both

Figure 3. Differences of averaged final energy in kJ/mol vs cluster
sizen for the generation-based algorithm (20 generations) and for the
asynchronous algorithm (5000 iterations) applied to pure neutral
TTM2-F water clusters.

Figure 4. Differences of averaged final energy in kJ/mol vs cluster
sizen for the generation-based algorithm (80 generations) and for the
asynchronous algorithm (20000 iterations) applied to pure neutral TIP4P
water clusters.
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potentials tested here. As discussed above, the removal of serial
bottlenecks in the new asynchronous variant should have a
measurable influence on the run time of the program. Therefore,
we also examined how long each algorithm took to complete
all of the steps. In Figures 5 and 6 the total run time versus the
number of steps is plotted for the two different potentials
together with third-order polynomial fits.

In both cases, six runs were performed for each cluster size.
The observable variability in run time for a given cluster size
(due to the stochastic nature of both algorithms) increases with
the size of the cluster. It reaches some thousands of seconds
for the TTM2-F runs and approximately a thousand seconds
for the TIP4P runs with the generation-based algorithm, and
less than a thousand seconds with the new algorithm. This
increase reflects the increasing time difference for local
optimizations of different starting structures, with growing
cluster size. For both potentials and algorithms we observe
stochastic deviations from the fit curve. Additionally, in the case
of the generation-based algorithm, all values for certain cluster
sizes deviate collectively from the fit. This presumably reflects
the effect of the number of operations not being an integer
multiple of the number of processes. Collapsing this scatter to
a mean value, we observe a speedup gained from the usage of
the new asynchronous algorithm, which takes on values up to
50%.

Figure 7 shows that the speed improvement is due to the
complete elimination of processor idle times. For the old
algorithm, “dips” in the overall load occur periodically, indicat-
ing processor idle times. Because of the forced synchronizations,
at the end of these dips almost all processors are waiting,
therefore these “dips” can take away up to 50% of the overall

system load. From the description of the new algorithm in
section 2.2, it is clear that these “dips” have now been replaced
by productive generation of new solution attempts.

4. Global Minimum Energy Structures

Until this point the focus of this work was completely on the
technical realization and first tests of this new implementation.
Furthermore, we have reduced the global convergence abilities
of the algorithms by a weak local optimization convergence
threshold (see above). Nevertheless, we are confident that the
old and new algorithm produce results that are essentially
identical (as far as this is possible for stochastic algorithms).
The main difference is that the new algorithm does this
substantially faster.

Therefore, we have also started production runs using the
standard (tighter) local optimization convergence thresholds
(10-4 after crossover, 10-8 after directed mutation and orien-
tational optimization) employed in our previous study.10 In these
runs, we have already managed to discover at least five
improvements over the previously published best structures for
(H2O)n within the TTM2-F model, namely, for the sizesn )
22, 24, 27, 29, and 30. From the remaining cases ofn e 30, all
of the previous results could be reproduced. Only forn ) 28
longer runs and/or a tighter convergence threshold would have
been necessary. Successions of (putative) global minimum
structures of water clusters have been presented and discussed
several times before (also in our previous work, ref 10).
Nevertheless, we again present a complete series of structures
starting withn ) 6, mainly because some of the new structures
we have found partially change the structural interpretations and
transitions we have presented in our previous work.

Experiment and theory agree upon simple, homodromic rings
as the best structures for the trimer, tetramer, and pentamer (with
the latter two being slightly bent out of plane at one edge). The
first interesting case is the hexamer because at least at low
temperatures the homodromic (quasi-)planar six-ring is not the
global minimum, but a three-dimensional structure (cf. Figure
8), either the cage or the prism (depending on the empirical
potential used or on the level of ab initio theory, and even on
the inclusion of zero-point vibrational energy30). In any case, a
decisive observation that carries through to far larger clusters
is that four-rings and five-rings appear to be energetically more
favorable than six-rings (or three-rings). The hexamer prism

Figure 5. Run time ins vs cluster sizen for the generation-based
algorithm (20 generations) and the asynchronous algorithm (5000
iterations) using the TTM2-F potential.

Figure 6. Run time ins vs cluster sizen for the generation-based
algorithm (80 generations) and the asynchronous algorithm (20000
iterations) using the TIP4P potential.

Figure 7. System load on an Athlon cluster vs time; top: generation-
based algorithm, saw-tooth-like dips in the load indicate processors
waiting for the next synchronization event; bottom: asynchronous
algorithm; all dips in the system load have been eliminated.
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contains three four-rings and two three-rings, while the cage
can be viewed as consisting of four (annealed) four-rings.

All larger water cluster structures are three-dimensional. Apart
from a preference for cubes and pentagonal prisms, previous
authors have found it hard to discern any obvious building
blocks or buildup sequences for these clusters. However, at least
in the size rangen ) 6-13, the best structures for the odd-
numbered clustersn ) 2m + 1, m ) 3, 4, 5, and 6, can always
be understood as insertion of an edge-bridging water molecule
into the best structure for the smaller even-numbered casen )
2m (cf. Figures 9-11). Interestingly, this rule also includes the
transition fromn ) 6 ton ) 7, for boththe cage and the prism.
Allowing for some very small rearrangements, this rule can be

complemented by recognizing that the transition from each odd-
numbered structuren ) 2m + 1 to the next larger even-
numbered structuren ) 2m + 2 can be effected by adding
another bridging water next to the first one. Equivalently, one
can get from an even-numbered structure withn ) 2m to the
next one withn ) 2m + 2 by insertion of a water dimer. This
then also includes the casen ) 12 f 14.

This rather simple succession also encompasses the step from
n ) 16 to n ) 18 (cf. Figure 12), but it already appears to be
first broken byn ) 15, which is a stack of two pentaprisms
that cannot be derived from the best structure forn ) 14 by
attaching an edge-bridging water molecule. In fact, upon closer
examination, the above rules also do not include the transition
from the single pentaprism atn ) 10 to the stack of two cubes
at n ) 12 (which repeats upon going fromn ) 14 ton ) 16).
One may attempt to “save” these rules for the latter two cases
by a small extension: Then ) 12 structure may also be viewed
as a stack of three squares. If two opposite bonds of the
equatorial square are broken, then one arrives at a stack of two
six-rings. These, in turn, can be constructed from then ) 10
pentaprism by inserting a water dimer.

However, this line of rationalization starts to get quite
convoluted at this point. Therefore, it is more helpful to again
include the more general observation that cubes and pentaprisms
are the preferred building blocks (which is consistent with the
above observation that rings with four and five members are
preferred). The above rules apply for small clusters, until enough
water molecules are present to form these building blocks. Also,
clearly, an odd-numbered cluster cannot be built by assembling
only cubes and/or pentaprisms, so the above edge-capping rule
is still realized in these cases. Starting fromn ) 8, however,
even-numbered clusters appear to realize the requirement of the

Figure 8. TTM2-F minimum structures for (H2O)6. The cage is the
global minimum for this potential (not including zero-point energy).

Figure 9. Global TTM2-F minimum structures for (H2O)n, n ) 7-9.

Figure 10. Global TTM2-F minimum structures for (H2O)n, n ) 10-12.
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best structure being formed by the smallest number of cubes
and/or pentaprisms. This rule for the even-numbered cases then
actually holds all the way up ton ) 24 (see below), for our
new improved set of TTM2-F minimum structures.

The first case that is definitely not classifiable by the above
rules or any simple modifications of them occurs for the 17mer
(Figure 12): With the TTM2-F potential, it gives rise to a
clathrate-like cage with one internal molecule (shown in blue
in Figure 12). No cubes or pentaprisms are visible in this
structure. At this point we should also re-emphasize a main
finding from our previous work:10 With the TIP4P potential,
the structure shown here is not the global minimum, but a
qualitatively very different one that does contain at least two
clearly identifiable cubes. Additionally, no molecule can be
viewed as being in the interior of this TIP4P cluster. MP2
calculations23 have clearly confirmed the expectation that the
much more complicated (and computationally expensive) TTM2-F
potential produces the correct result in this situation. Although
this confirms the qualitative failure of TIP4P, the error is not
as gross as it may seem: Both structures are stable minima for
both potentials, and in both cases the energy difference is only
a few kJ/mol.10 These small differencs indicate that the appealing
TTM2-F cage structure with an interior molecule is not an
overwhelming necessity forn ) 17 but rather the chance result
of a delicate balance of several opposing factors, presumably
including the preference for cubes and pentaprisms on one hand
and the superior stability due to the first occurrence of a central
four-coordinated molecule on the other hand (which is clearly
less strained than four-coordinated molecules at the surface).

Four-, five-, and six-membered rings are the common pattern
of the surfaces of larger clusters; occasionaly larger rings also

occur. As soon as one allows for the possiblity of nonconvex
surfaces, classifying water molecules in clusters as surface or
interior becomes a matter of somewhat arbitrary definitions. In
Figure 13, we show two typical six-membered surface rings in
a section from a larger cluster, together with interior molecules
directly below the ring centers, marked in blue. Clearly, with
both rings, one would also have the freedom of classifying them
as “dips” in the surface, formed by two five-membered rings
including the blue molecule. Because the 17mer as a global
minimum shows two such six-membered rings at its surface,
we tend to accept all six-membered rings as surface structures.
Furthermore, because seven-membered and larger surface rings/
dips leave more room for molecules bridging them without
undue strain, we tend to question the global-minimum status
of clusters containing such larger surface rings.

Figure 11. Global TTM2-F minimum structures for (H2O)n, n ) 13-15.

Figure 12. Global TTM2-F minimum structures for (H2O)n, n ) 16-18.

Figure 13. Two six-membered rings as part of a cluster surface.
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If we accept that atn ) 17 a cage with a single interior
molecule (narrowly) beats the otherwise expected singly edge-
capped arrangements of cubes or pentaprisms, then the following
development toward larger clusters appears quite logical: Atn
) 17, the water network is barely large enough to close around
the central molecule, in fact it can do so only at the expense of
exhibiting two less favorable six-rings. Therefore, forn ) 19,
21, 23,... these structures should be energetically even more
favored compared to the cube-and-pentaprism structures. How-
ever, for even-numbered structures, arrangements of cubes and
pentaprisms may still be better for some of the larger cluster
sizes because in these cases we need not add an edge-capping
water molecule (which contributes less to the total energy
because it is only 2-coordinated). This is exactly our observation
(cf. Figures14 and 15): We observe a strict even-odd alterna-
tion of cubes/pentaprisms with singly filled cages. In our
previous work,10 we had seen this alternation only for the size
range n ) 17-21, with the even-numbered clusters also
switching to cages above this size range. With the improved
global minimum structures this “switching” is observed through-
out the size rangen ) 17-25. The qualitative implication of
this observation is that the transition from clusters with all
molecules on the surface to clusters with interior molecules

cannot be said to occur at a certain size but rather is smeared
out over a rather wide size range.

The following is a side note of caution for other researchers
in this area: Even subtle distinctions in energy can be
accompanied by great differences in geometrical structure. This
is proved by the 21mer whose global minimum is a centered
dodecahedral cage. A slightly different centered dodecahedron
is found at E ) -949.270 kJ/mol, but a totally different
geometry of two fused cubes and two fused pentaprisms is
located atE ) -949.004 kJ/mol, which differs by only 0.03%
(cf. Figure 16). Note that the relative difference in energy
between this dodecahedron withE ) -949.270 kJ/mol and the
global minimum withE ) -952.266 kJ/mol is 0.3% and hence
also quite small.

Examining this cube-and-pentaprismsn ) 21 local minimum
structure more closely, another lesson can be learned: In the
equator (at the borderline between one pentaprism and one
cube), one H bond is “broken”. It turns out that it is “topologi-
cally” impossible to close this bond without breaking another
one elsewhere. This is not a peculiarity of this particular cluster
structure, but rather one example for a more general phenom-
enon: Water molecules can be arranged in isolated cubes and
pentaprisms with one H bond along each edge. Likewise, these

Figure 14. Global TTM2-F minimum structures for (H2O)n, n ) 19-21.

Figure 15. Global TTM2-F minimum structures for (H2O)n, n ) 22-24.
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cubes and pentaprisms can be “stacked” (or fused at common
faces) in one direction (viz.n ) 12, 15, 16, 18), forming quasi-
one-dimensional strings, and still there can be exactly one h
bond along each edge. However, as soon as stacking occurs
into more than one direction (not only for completely filled
quasi-two-dimensional arrangements, but already for simple
isolated branches), restrictions appear at the branching points:
If branching involves only pentaprisms, as, for example, in the
n ) 24 global minimum structure (cf. Figure 15), then only
three pentaprisms (and correspondingly only three edges on each
surface) meet at such a branching point. Therefore, we can still
have one H bond along each edge, which is why there is a H
bond linking the two central water molecules at the branching
point in the n ) 24 structure. In contrast, when branching
involves cubes (or a mixture of cubes and prisms, as inn )
22), four polyhedra (corresponding to four edges on each
surface) can meet at one point, leading to five edges meeting at
this point (including the edge perpendicular to the stacking
directions). Because one water molecule can have at most four
H bonds (without incurring excessive energy penalties), it is
impossible in such a situation to still have one H bond along
each edge. This is why the central H bond is missing inn ) 22
(as opposed ton ) 24) and also why one H bond is missing in
the cubes-and-pentaprisms local minimum ofn ) 21. (Because
of the missing central bond connecting the two layers, then )
22 structure could also be classified as an “empty cage”;
however, this is probably misleading because the layers are too
close to each other for another molecule to fit in between).

As noted above, then ) 17 cage is “tight” and has two six-
rings in the surface. The looser and more favorablen ) 19
cage can be built with one six-ring and two four-rings.
Consequently, in then ) 21 cage we have no six-rings anymore
(and no four-rings), only five-rings. Formally, this is a dodeca-
hedral cage, but a distorted one, due to the four H bonds linking
the central molecule with the cage. Clathrate-like dodecahedral
water molecule cages can also form around a variety of other
host atoms and molecules (neutral and ionic). Hence, they have
been conjectured to be responsible for magic numbers, for
example, in alkali cation microhydration clusters, a hypothesis
that was tested and replaced recently.31

Because of this special role of the dodecahedral cage, one
could expect that larger water clusters may form by edge-
capping the dodecahedral cage at the outside. As already
diagnosed in ref 10, this is not the case; instead, the cage atn
) 23 is formed by extending then ) 19 cage by face-capping
the six-ring with a four-ring, forming a local protrusion similar
to a pentagonal prism (cf. Figure 15).

As already remarked above, atn ) 24 we find the last
member of the structural family built purely from cubes and
pentaprisms. Building larger clusters in that fashion presumably
entails one of two penalties: As discussed above in connection
with n ) 21, this build-up pattern has its restrictions. Continuing
to aim at structures with exactly one H bond along each edge,
the resulting structures would have to consist of branched
networks (n ) 24 being one such structure with one branching
point) with a fractal dimension between 1 and 2 and a
correspondingly large surface-to-volume ratio or, equivalently,
a large amount of surface strain. Conversely, attempts to stack
cubes and pentaprisms to filled two- or three-dimensional
arrangements lead to structures where along some edges (on
the surface and/or in the interior) there can be no H bonds;
instead, along such an edge, there is an unfavorable interaction
between neighboring water molecules. Additionally, while cubes
can be stacked in a 3D space-filling fashion, this fails as soon
as pentaprisms with fivefold (quasi-)symmetry axes are in-
volved. In this way, it is not surprising that at this size the
transition to cages is complete.

As a specific example of this line of argument, atn ) 27
one would have the theoretical possibility of reconciling cubes
as building blocks with cages by constructing a structure
composed of only eight cubes, arranged in a two-by-two-by-
two pattern, formally containing exactly one interior molecule
in the center. As analyzed above, however, this would lead to
several branching points where five edges meet and to a central
point with six edges meeting. Thus, the inherent strain of the
cuboid arrangement (where all bond angles strongly deviate from
the ideal one for water) cannot be compensated by a cor-
respondingly high number of H bonds. Therefore, we have not
observed a structure like that.

For larger clusters, we find only filled cages, and the new
cage growth pattern just described continues (cf. Figures 17 and
18). In contrast to our findings in ref 10, the new series of global
minima including our improved ones does not exhibit cuboid
protrusions anymore but merely pentaprismatic ones. Very inte-
restingly, we now also see cages with two pentaprisms protrud-
ing from them. For the special case ofn ) 29, these two penta-
prisms are exactly opposite to each other, leading to a surpris-
ingly high symmetry of the O-atom scaffold. In all of these
cases (n ) 23, 25, 26, 27, 29), the pentaprismatic protrusions
are not true pentaprisms because one of their H bonds (the one
toward the cage center) is broken, which is why we call this an
extension of the cage rather than an outside attachment.

For n e 27, our improved global minimum cage structures
contain one interior molecule (in contrast to our preliminary

Figure 16. Two low-energy local TTM2-F minima for (H2O)21.
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finding of two internal molecules in ref 10). The surface of the
28mer contains a three-ring and two six-rings (possibly indicat-
ing some strain, as forn ) 17), and now there are enough
molecules present to build a cage with two internal molecules.
The 29mer contains only one internal molecule, while between
n ) 30 andn ) 34 the number of internal molecules varies
from zero to two: In case of the 30mer there is no internal
molecule, but inside the 31mer again two molecules are
contained (cf. Figures 19 and 20). Both clusters have cuboid
protrusions instead of pentaprismatic ones as they occur for
smaller cages. With the 32mer, there follows again a cage
structure with two internal molecules, whereas the 33mer is an
irregular empty cage and the 34mer again contains two internal
molecules. Interestingly, from all of our proposed global
minimum structures with two internal molecules, only forn )
28 andn ) 32 there is an H bond between the two, although it
is hard to imagine how to continue building larger clusters
without H bonds between the interior molecules. These findings
support the conclusion that the transition toward two internal
molecules is again smeared out, similar to the one toward one
molecule in the range ofn ) 17-25.

We refrain from analyzing this second transition in more
detail because we see several indications of not having found
the global minimum structures forn g 30 yet. The 30mer and
the 32mer exhibit large dips in their surfaces. In both cases,

there are two molecules at the bottom of these dips. In case of
the 30mer, the rim of the dip is an eight-ring, and it is a seven-
ring in case of the 32mer. As remarked above, to our experience
surface rings of these sizes are often signatures of nonoptimal
structures. Furthermore, note that the energies forn ) 32, 33,
34 are visibly above the linear trend in Figure 21 below, which
confirms that they are probably not yet good enough.

In the traditional plot of energy versus inverse cluster radius
(cf. Figure 21), a linear trend seems to be visible already forn
g 12. However, as should be evident from the discussion above,
this is by no means a signature of bulk structures. On the
contrary, upon magnification, the data exhibit an irregular pattern
of steps and oscillations around the apparent linear trend, more
in line with the varying trends described above.

The stability function (cf. Figure 22) is often used to assign
magic number status to a given cluster size. However, with the
possible exceptions ofn ) 8 andn ) 12, no single cluster size
is really convincingly outstanding in this plot. Nevertheless,
besides confirming our suspicion thatn ) 33 and 34 probably
are not yet close enough to the true global minimum energies,
it does allow for some weaker observations. For example, none
of the early cagesn ) 17, 19, or 21 stand out as particularly
stable, including the famous dodecahedral cage atn ) 21.
Instead, the neighboring structuresn ) 16 and 20 built from
cages and pentaprisms fare better. Nevertheless, the cage

Figure 17. Global TTM2-F minimum structures for (H2O)n, n ) 25-27.

Figure 18. Global TTM2-F minimum structures for (H2O)n, n ) 28-30.
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stabilities are rising toward larger clusters, culminating inn )
23, which turns out to be more stable than its immediate
neighborsn ) 22 and 24 that are built from cages and
pentaprisms. As evidenced by the decrease toward a local
stability minimum atn ) 28, attaching appendages to the outside
of cages does not lead to good structures. Finally, the dips atn
) 30 andn ) 33 confirm our suspicion that also at these sizes
we have probably not seen the true global minimum structure
yet.

5. Comparison with Relaxed Ice Structures

In a recent study,32 an attempt was made to find water clusters
with a crystalline core using the TIP4P potential and a certain
protocol that mixed several approximate optimization strategies,
for several amorphous and crystalline input structures at a few
isolated cluster sizes. Although smaller input structures withn

) 48 andn ) 123 lost their crystallinity during this process, at
a cluster size ofn ) 293 a crystal-like core was obtained inside
an amorphous hull, which matches up nicely with structural
expectations from other theoretical studies and experiments.

The global minimum cluster structures presented in Section
4 of this paper definitely cannot contain ice-like features, simply
because up ton ) 34 we observe a maximum number of two
internal molecules, and, as expected, surface molecules are
subject to significant deviations from ice structures upon
optimization (see below). However, we already have preliminary
results from extending our global optimization approach sys-
tematically up to approximatelyn ) 100. We are sure that these
results are far from converged yet because the total operation
count in each of these runs for larger clusters has been smaller
than in those for the largest clusters we have shown explicitly
in Section 4 above. Nevertheless, it is tempting to compare these

Figure 19. Global TTM2-F minimum structures for (H2O)n, n ) 31-32.

Figure 20. Global TTM2-F minimum structures for (H2O)n, n ) 33-34.
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first systematic global optimization results for larger water
clusters to relaxed ice structures of the corresponding sizes.
While this is not going to provide reliable answers, it does
provide fairly tight bounds and reliable qualitative insight
because the most general and most reliable characteristic of EA
minimization methods is their quick decrease in energy during
the very first stages.

For this comparison, we have generated spherical ice sections
in the size range fromn ) 4 up ton ) 150, for six different ice
modifications, employing the TTM2-F potential in purely local
optimization mode. Specifically, spherical sections of the chosen
modifications of ice had to be prepared first. This was done in
a similar manner as suggested in ref 32. Specifications of the
crystal structures of the ice modifications Ic,33 Ih,34 VI, VIII, 35

and IX36 were obtained from the Inorganic Crystal Structure
Database.37 A spherical volume was chosen large enough to

contain∼1000 molecules. Then the center of mass of these
sections was calculated and all molecules were sorted by their
distance to this center of mass. The firstn molecules (n ) 4,...,
150) were chosen successively to build a spherical section of
ice.

Each of these unrelaxed cutouts was then relaxed with the
TTM2-F potential, in two steps. First, a purely orientational but
global optimization was performed, with the O-atoms kept fixed,
to obtain a reasonable hydrogen-bond network. This was done
with an EA that resembles the generation-based variant of our
phenix algorithm. The ice sections resulting from this procedure
then underwent a single local optimization with a tight threshold
of 10-8, as used in our global cluster optimization after
orientational optimization or directed mutation. This threshold
is the best compromise because looser thresholds yield worse
results and tighter thresholds do not necessarily produce better
results for the cost of extended CPU time.

After this relaxation, all of these ice cutouts exhibit consider-
able reconstructions in their outermost surface layers. If the
cutouts are too small, then these reconstructions affect the whole
system, resulting in a cluster that can only be categorized as
amorphous. Clearly, these findings in themselves already put a
lower bound on the size of the first ice-like cluster. For an easy,
automatic determination of the size of the ice-like core (if any)
in these relaxed ice sections, we have used the following
protocol: Employing the impose routine of the TINKER38

program package, the root-mean-square deviation (RMSD) of
all molecules in the cutout was calculated, relative to the original
ice lattice. However, it turned out that the total RMSD value
was not sensitive enough to characterize ice content because of
its averaging over all molecules. Therefore, the molecules in
the system were categorized according to their individual
contribution to the total RMSD. All molecules with a displace-
ment smaller than a given threshold were accepted as located
in a position in accordance with the initial ice lattice. This is
an unbiased method of abstracting displaced surface molecules,
with the advantage of avoiding arbitrary definitions of surface
layer thickness. Because protons are disordered in the chosen
modifications, Ic, Ih, and VI, the process of superimposition
was restricted to the skeleton of O atoms of each pair of
structures.

In Figures 23 and 24, the numbers of ice-like molecules
(identified in the above way as located in positions according
to the parent modification of ice) are plotted versus the number
of molecules of the initial unrelaxed spherical section of the
ice crystal, for two examples of all ice modifications studied
here in this way. As expected, these numbers of ice-like

Figure 21. Total energy in kJ/mol per molecule vs number of
molecules.

Figure 22. Stability function: E(n - 1) + E(n + 1) - 2E(n) vs cluster
sizen.

Figure 23. Number of molecules in ice-like positions vs total number
of molecules contained in the originial spherical section of ice Ic.

Figure 24. Number of molecules in ice-like positions vs number of
molecules contained in the originial spherical section of ice Ih.
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molecules increase both with the size of the initial cutout (i.e.,
from left to right in each figure) and with a growing threshold
for accepting displacments from original ice crystal positions
as still ice-like (as shown by the two different data sets in each
figure). We would have also expected small oscillations
superimposed on the former monotonic trends because taking
successively larger cutouts from an ice crystal can easily lead
to more or less favorably positioned molecules at the outer
fringes. In all cases, however, these oscillations are larger than
expected. To quote an arbitrary medium-sized example, for ice
Ic at a moderate threshold value of 0.27 Å (∼10% of the average
O-O distance; lower curve in Figure 23), from an initial cutout
of 123 molecules, an inner core of 35 molecules is ice-like after
relaxation. If the cutout contains only 1 molecule more or less,
then the ice-like core shrinks to only 15 molecules. Accordingly,
in each curve, a few sizes with particularly large ice-like cores
stick out, similar to magic numbers; in the above example of
ice Ic at a threshold of 0.27 Å; these aren ) 123 with a core
of 35 molecules andn ) 147 with a core of 50 molecules (and
possibly also a few smaller values ofn). A comparison between
the two figures quickly shows that such peaks occur at different
locations and that the whole oscillation patterns are largely
different. (Similar plots for the ice modifications VI, VIII, and
IX are qualitatively similar but quantitatively different.)

Of course, some caution is advisable here. Clearly, our cutout
and relaxation procedures have been chosen arbitrarily, and fur-
thermore the first step of the relaxation employed a nondeter-
ministic algorithm, for which (because of the size of these cut-
outs) we cannot claim to have reached global convergence in
the larger cases. We expect changes in this procedure (or merely
repetitions of the same procedure) to yield different oscillation
patterns. For more meaningful results, one would have to
average over a large ensemble of such curves (possibly also
including small random initial displacements of the molecules
from their ice positions), which would lead to these oscillations
being averaged out to some (unknown) extent. Such an
averaging was simulated in Figure 25 by a moving average with
a spread of five cluster sizes. In comparison to the original lower
curve from Figure 23, the peaks are broadened but still resemble
the characteristics of the underlying original curve. In any case,
this oscillative behavior indicates that focusing on single,
isolated cluster sizes, as was done in ref 32, may lead to less
reliable results than a survey of several broader size intervals.

As argued above, further analysis of these data should yield
lower bounds for the first occurrence of ice cores in water
clusters. However, as the strong differences between the two
curves in each of the Figures 23 and 24 indicate, these lower

bounds depend strongly on the degree of similarity threshold
value used to accept structures as ice-like. Furthermore, they
also depend on an arbitrary definition of how large an ice-like
arrangement has to be as such. There are no definite answers
to these questions. The number of molecules in a single unit
cell of a given ice modification appears to be a reasonable
minimal size. Taking this at face value, however, the cuboid
octamer is the smallest crystal of ice Ic. Clearly, a more
reasonable definition should, for example, claim that beyond
such a minimal cluster size, the size of the ice-like core should
not drop significantly below the size of the unit cell. Again
taking the threshold value of 0.27 Å; (∼10% of the average
O-O distance) as an arbitrary but perhaps reasonable measure,
the smallest cluster with an ice-like core should be expected at
n ≈ 95 for ice Ic and for ice Ih.

These predictions can be refined (and perhaps also made less
arbitrary) by checking at which size an unbiased global structure
optimization fails to find a water cluster lower in energy than
those generated by the above ice-cutout procedure. For this
purpose, in Figure 26, we have plotted energies per molecule
vs number of molecules, for spherical sections of ices Ic, Ih,
and IV (as generated above) up to aboutn ) 150, in direct
comparison to our preliminary global optimization results for
water clusters up ton ) 105 (which we do not claim to have
reached global convergence beyondn ) 34, see the discussion
above). Clearly, our cluster results are well below all ice-cutout
results at least up ton ≈ 60, and still almost strictly below up
to n ≈ 90. Because our results are strict upper bounds for the
true global minimum energies, and because we have so far failed
to locate any ice structures by the above matching procedure
in our globally optimized structures, the transition to clusters
with ice-like cores should not be expected belown ) 90.

Performing unbiased global cluster structure optimization at
cluster sizes ofn ≈ 90 with any reasonable chance for obtaining
a final best structure that is reasonably close to the global
minimum, both in energy and structure, is extremely expensive.
Therefore, we plan to speed up (but also partially bias) our future
searches by including ice cutouts into the initial guess pool. As
shown in this section, this should be done not for isolated cluster
sizes, but for several neighboring sizes, to avoid hitting cluster
sizes that can accommodate unusually large or small ice cores.

6. Conclusions and Future Work

With this work, we have established, analyzed, and tested a
generation-free parallel EA implementation for global cluster

Figure 25. Number of molecules sited in ice position vs number of
molecules contained in the originial spherical section of ice Ic and the
same data provided with a moving average.

Figure 26. Energy in kJ/mol per molecule vs number of molecules of
optimized clusters and locally optimized spherical sections of ices Ic,
Ih, and VI. The cluster results beyondn ) 34 are not claimed to be
global minima.
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structure optimization. By replacing the traditional generation
concept with a new pool concept, operated upon by an arbitrary
number of unsynchronized parallel processes, it completely
eliminates serial bottelnecks and the processor idle times
associated with them. This reduces the wall-clock times by about
a factor of 2, without affecting the quality of the results and
without changing our previous successful algorithm to any
significant extent. At the same time, this conceptual change in
implementation makes the algorithm efficient for arbitrary
numbers of parallel processes, severing previously important
links between population size and number of processes.

Clearly, this enables us to treat larger clusters than before in
a much more flexible manner. As evidence of this, we could
not only reproduce our previous results for TTM2-F water
clusters up ton ) 30 but even improve some of them and extend
the results ton ) 34. This has led to modifications of our earlier
results, in particular to the prediction of an unsually broad and
strictly even-odd-oscillative size rangen ) 17-24 for the
transition from all-surface structures to cages with one interior
molecule, and to the proposal of a similarly oscillative and broad
transition from one to two interior molecules in the size range
n ) 28-34.

Applications to still larger TTM2-F water clusters are
underway, with the aim of checking and extending the TIP4P
results by Buch et al.32 on the first occurrence of ice cores in
water clusters. Comparisons between our first preliminary results
(up to n ) 105) and relaxed sections from several ice
modifications indicate that the onset of ice cores is difficult to
pin down unambiguously, but a lower bound ofn ≈ 90 may
tentatively be extracted from our data.
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